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In culture, normal human cells have a finite lifespan, ulti-
mately ceasing to proliferate in a process called replicative
senescence1

. Introduction of certain viral oncoproteins2 or abla-
tion of tumor suppressor gene function3 permits human cells to
bypass senescence; however, such post-senescent cells eventu-
ally reach crisis, a period of widespread cell death. The limited
replicative lifespan of human cells has been postulated to serve
as an important barrier to malignant transformation4, indicat-
ing that cancer cells must overcome this obstacle and achieve
replicative immortality before they can form malignant
neoplasms.

Several observations indicate that telomeres, DNA–protein
structures located at the ends of eukaryotic chromosomes, are
important in the immortalization process5. In most normal
human cells, telomeric DNA is progressively lost with each
round of cell division6,7. Eventually, telomeres shorten to a crit-
ical length and lose their ability to protect the ends of chromo-
somal DNA (refs. 8–10). As a consequence, widespread
chromosomal fusion and degradation occur; these karyotypic
changes correspond in time to the growth arrest found in cul-
tured cells11,12. In contrast, telomere length is stable in immor-
talized cells including tumor cells10, indicating that their
replicative immortality is attained through stabilization of
telomere length.

In most tumors, this stabilization seems to be achieved
through the expression of telomerase, which maintains and
elongates telomeres by the de novo synthesis of telomeric DNA.
The telomerase holoenzyme13 is composed minimally of a con-
stitutively expressed, template-containing RNA subunit14 and a
catalytic protein subunit15–19 (human telomerase reverse tran-
scriptase; hTERT). The level of hTERT expression is the rate-
limiting component of this complex; most normal human
somatic cells do not have detectable telomerase activity and
lack expression of hTERT, whereas most immortalized cells
have readily detectable telomerase activity and express hTERT
(refs. 15,16,19–21). Ectopic expression of hTERT in telomerase-
negative pre-senescent22,23 and pre-crisis24–26 cells results in
telomerase activity and stabilization of telomere length and
permits these cells to bypass senescence and crisis, respectively.
Moreover, hTERT cooperates with the simian virus 40 large T
antigen and oncogenic ras to convert normal human cells into
transformed, tumorigenic cells27.

These observations and the resulting model indicate that the
telomerase expression found in 80–90% of human cancers20,28 is
essential for the continued growth of malignant cells, rather
than being a secondary marker of the transformed state. One
prediction of this model is that inhibition of telomerase func-
tion may alter the growth properties of malignant cells and, if
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Telomerase is a ribonucleoprotein enzyme that maintains the protective structures at the ends
of eukaryotic chromosomes, called telomeres. In most human somatic cells, telomerase ex-
pression is repressed, and telomeres shorten progressively with each cell division. In contrast,
most human tumors express telomerase, resulting in stabilized telomere length. These obser-
vations indicate that telomere maintenance is essential to the proliferation of tumor cells. We
show here that expression of a mutant catalytic subunit of human telomerase results in com-
plete inhibition of telomerase activity, reduction in telomere length and death of tumor cells.
Moreover, expression of this mutant telomerase eliminated tumorigenicity in vivo. These ob-
servations demonstrate that disruption of telomere maintenance limits cellular lifespan in
human cancer cells, thus validating human telomerase reverse transcriptase as an important
target for the development of anti-neoplastic therapies.
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Fig. 2 Effects of WT-hTERT and DN-hTERT on telomerase activ-
ity. After infection and cloning, telomerase activity was deter-
mined in cell lines LoVo a, HA-1 b, SW613 c, SKBR3 d and 36M e.
Telomerase activity was also determined in the telomerase-nega-
tive cell line GM847 f. For each cell, 200 ng cellular lysate was an-
alyzed for telomerase activity using the TRAP assay. Analysis of up
to 1 µg lysate gave identical results (data not shown). Lanes 1–4,
two clones expressing the control retrovirus; lanes 5–8, two
clones expressing WT-hTERT; lanes 9–12, two clones expressing
DN-hTERT. HT +, heat treatment of samples before the TRAP
assay; HT –, no heat treatment; IC, internal control PCR product,
demonstrating the absence of PCR inhibitors in the lysates.
Percentage of completely telomerase-negative clones isolated
from each cell line: LoVo, 70%; HA-1, 79%; SW613, 30%; SKBR3,
71%; 36M, 71%.

so, may represent a new strategy for anti-neoplastic therapies.
hTERT is a particularly attractive target, as it shares consider-
able sequence similarity with reverse transcriptases29.
Replacement of an aspartic acid residue (D530) located in the
reverse transcriptase-like catalytic cleft of the yeast TERT com-
pletely abolishes its catalytic activity30,31 and acts as a partial
dominant negative allele when overexpressed in yeast31.
Similar mutations in the sequences encoding the catalytic core
of hTERT abrogated the catalytic activity of hTERT in in vitro re-
constitution assays17,32.

To determine whether disruption of hTERT catalytic func-
tion would limit the growth of normal and malignant cells, we
created a catalytically inactive, dominant negative form of
hTERT. We expressed this mutant (DN-hTERT) ectopically in
human immortalized cells and cancer cells to assess the bio-
chemical and physiological effects of telomerase inhibition on
cellular immortality and tumorigenicity.

Effects of DN-hTERT on telomerase activity
To create DN-hTERT, we substituted the aspartic acid and va-
line residues at positions 710 and 711 in the third RT motif of
hTERT with alanine and isoleucine, respectively (Fig. 1a). We
introduced amphotropic retroviral vectors encoding DN-
hTERT, wild-type hTERT (WT-hTERT), or a control vector ex-

pressing only a drug resistance marker into various cell lines
(Fig. 1b). The infected cell lines included the human cancer cell
lines 36M (ovarian), SW613 (breast), LoVo (colon) and SKBR3
(breast) as well as spontaneously immortalized, telomerase-pos-
itive human embryonic kidney cells33 (HA-1). To ascertain the
specific effects of DN-hTERT and WT-hTERT, we also intro-
duced these two alleles of hTERT into the immortal human cell
line GM847, which maintains telomere length by an as-yet un-
characterized alternative mechanism34. After drug selection,
the successfully infected cells were cloned and the expression

of the introduced WT- and DN-hTERT was confirmed
using RT–PCR with primers specific for the introduced
genes (Fig. 1a and c).

We analyzed telomerase activity in clonal isolates of
each of the human cell lines that had acquired the
control retroviral vector, WT-hTERT or DN-hTERT.
Expression of DN-hTERT in telomerase-negative

Fig. 1 Expression of WT-hTERT and DN-TERT in immortalized cell lines.
a, Retroviral constructs used to express WT-hTERT and DN-hTERT. Arrows,
primers used for RT–PCR. Motifs labeled as described16; motif 3 has also
been called motif A (ref. 15). T, region conserved among the TERTs but not
among other reverse transcriptases29. b, Experimental design and refer-
ence time frame. After infection, cells were selected in puromycin, grown
to confluence (infection/selection, cloning), and cloned by limiting dilu-
tion and ring cloning (cloning). Population doubling (PD) 0 was defined
after this point. The process of obtaining clonal isolates required approxi-
mately 20 population doublings before the designation of PD 0. c,
Expression of virally expressed WT-hTERT and DN-hTERT (ectoptic hTERT)
analyzed by RT–PCR. Total RNA was analyzed from 36M (single-cell clones)
and GM847 immortal cell lines. Above, WT-hTERT (WT) and DN-hTERT
(DN) expression. V, control vector. GADPH (below), amplified to confirm
that an equal amount of mRNA was present in each sample. No contami-
nating DNA was present in the samples (data not shown).
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Fig. 3 Effects of DN-hTERT expression on telomere
length. a and b, 36M (a) or GM847 (b) single-cell
clones expressing a drug resistance marker alone
(V), WT-hTERT (WT) or DN-hTERT (DN) are the
same as those analyzed in Fig. 2e and f. Total ge-
nomic DNA was assessed for telomere restriction
fragment size by Southern blot analysis with a
telomeric probe. a, Conventional electrophoresis. b,
Pulse-field electrophoresis. PD, population dou-
bling; c, clone number. Left margin, molecular size
markers (kb). c, Clonal isolates of HA-1 cells ex-
pressing DN-hTERT were analyzed by flow–FISH at
late passage, and their telomere length was com-
pared with that of parental HA-1 cells. Horizontal
axis, logarithmic scale. Right, Mean fluorescence
(geometric mean). c, clone number. Telomere and
X Alphoid probes used for flow-FISH. d, Telomere
dysfunction in cells expressing DN-hTERT.
Metaphase chromosomes obtained from 36M cells
were banded with trypsin and stained with Giemsa
(left) or were analyzed by FISH using a telomere-spe-
cific peptide-nucleic acid probe (right, green). Top
row, Parental (uninfected) cells; bottom row, cells
expressing DN-hTERT. Arrowheads, chromosomal fu-
sions resulting in dicentric chromosomes.

GM847 cells did not result in telomerase ac-
tivity, confirming that this mutant is catalyti-
cally inactive (Fig. 2f, lanes 9–12)(refs. 17,32).
Expression of DN-hTERT in previously telomerase-positive cells
produced multiple cell clones that lacked detectable telomerase
activity (Fig. 2a–e, lanes 9–12). In contrast, expression of WT-
hTERT slightly increased the overall telomerase activity in
telomerase-positive cells (LoVo, HA-1, SW613, SKBR3, 36M;
Fig. 2a–e, lanes 5–8) and induced enzyme activity in the telom-
erase-negative cell line GM847 (Fig. 2f, lanes 5–8), confirming
that ectopic expression of hTERT was not cytotoxic. Thus, ex-
pression of a catalytically inactive mutant of hTERT results in
disruption of existing telomerase activity.

Effects of DN-hTERT on telomere length and function
We next sought to determine whether inhibition of telomerase
activity influenced telomere length. We assessed mean telomere
length in 36M ovarian cancer cell clones expressing either WT-
or DN-hTERT. The telomere lengths in this cell line are ordinar-
ily maintained in the range of 5–7 kb (Fig. 3a). As 36M cell clones
expressing DN-hTERT were passaged, gradual telomere shorten-
ing occurred (Fig. 3a, lanes 7–10). We estimate that these cells
lost 3–5 kb of telomere length from the time of infection. As the
process of isolating cell clones expends approximately 20 popu-
lation doublings (Fig. 1b), the loss of telomere sequences is con-
sistent with prior measurements of telomere loss in
telomerase-negative cells6. In contrast, cells expressing a control
retrovirus maintained stable telomere length (Fig. 3a, lanes 1
and 2) and cells expressing WT-hTERT showed stable telomere
maintenance at a slightly longer length (Fig. 3a, lanes 3–6).
Similar results were obtained with SW613 breast cancer cells ex-
pressing WT- or DN-hTERT (data not shown). Analysis of telom-
erase-negative GM847 cell clones expressing DN-hTERT also
demonstrated that their telomere length was stable over nearly
100 population doublings (Fig 3b), indicating that the mutant
enzyme had no effects on the telomeres of cells that maintain
their telomeres through a telomerase-independent mechanism.

We next analyzed spontaneously immortalized HA-1 cells,

which maintain telomere length in the range of 3–4 kb (ref.
35). Introduction and subsequent selection of clonal isolates
expressing DN-hTERT in these cells yielded only small numbers
of transduced cells, forcing us to analyze telomere length by
the flow cytometric–fluorescent in situ hybridization
(flow–FISH) technique36. This assay permits the examination of
telomere length in a small number of cells. Expression of DN-
hTERT in these cells resulted in loss of substantial telomeric se-
quences compared with those of the parental cells (Fig. 3c).

To determine whether the telomere loss induced by DN-
hTERT led to telomere dysfunction, we analyzed chromosomal
metaphase spreads derived from the 36M ovarian cancer cell
clones expressing DN-hTERT. Confirming the Southern blot
analysis results (Fig. 3a), loss of telomeric sequences in cells ex-
pressing DN-hTERT was easily detected using the FISH tech-
nique with a telomere-specific probe (Fig. 3d, right).
Furthermore, in metaphase cells expressing DN-hTERT, we
identified the presence of dicentric chromosomes and chromo-
somal fusions (in 14 of 14 cells analyzed; Fig. 3d, left). Such fu-
sions occurred both in cells with normal numbers of
chromosomes (1–3 fusions/metaphase) as well as in aneuploid
cells (3–17 fusions/metaphase) and seemed to occur between
chromosome ends that lacked telomeric sequences detectable
by the FISH technique (Fig. 3d, right). In contrast, we did not
identify any such structures in parental 36M cells (0 of 20 cells
analyzed; Fig. 3d) or in 36M cells expressing WT-hTERT (0 of 12
cells analyzed), even though these cells were also aneuploid
(data not shown). These results confirm that inhibition of en-
zyme activity by DN-hTERT disrupts telomere maintenance and
ultimately results in telomere dysfunction.

Effects of DN-hTERT on cell proliferation
We characterized the growth properties of cells expressing ei-
ther WT-hTERT or DN-hTERT. The growth kinetics of cells ex-
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at first in these cultures; later, widespread cell
death was apparent. As apoptosis is a com-
mon mechanism of cellular death, we investi-
gated whether these cells had the phenotypic
hallmarks of apoptosis. Flow cytometric
analysis of DNA content in HA-1 cells ex-
pressing DN-hTERT demonstrated the ap-
pearance of a sub-G1 peak at a time
corresponding to the appearance of short-
ened telomeres and morphological changes
(Table 1). Similar results were obtained by
TUNEL assay37 of DNA fragmentation in both
HA-1 (Table 1) and 36M cells (Fig. 5b). These
results indicate that shortening of telomeres
in these cells eventually results in the induc-
tion of apoptosis.

A mutant form of the telomere-binding
protein telomere restriction fragment-2 can
induce changes in telomere structure and a
subsequent p53-dependent induction of
apoptosis38. Here, we analyzed HA-1 cells in
which the p53 protein has been inactivated
by large T antigen33, and 36M cells that con-
tain defective p53 (ref. 39). In contrast to
human embryonic kidney cells lacking large
T antigen, HA-1 (Table 1) and 36M cells39

were refractory to arrest at the G1 checkpoint induced by γ-irra-
diation, confirming that the p53 pathway is indeed nonfunc-
tional40. Nonetheless, these cells underwent apoptosis after
telomere shortening (Table 1 and Fig. 5b), indicating that
telomere loss and the resulting induction of apoptosis can be
mediated by a p53-independent pathway.

Effect of DN-hTERT on tumorigenicity
Inhibition of cell growth and induction of apoptosis in vitro in-
dicated that inhibition of telomerase activity would reduce the
tumorigenicity of cells in vivo. To confirm this, we injected late-
passage clonal isolates from 36M cells expressing control retro-
virus, WT-hTERT or DN-hTERT vectors subcutaneously into
immunodeficient nude mice. Cells expressing control retro-
virus or WT-hTERT rapidly produced tumors in this assay

pressing WT-hTERT did not differ substantially from those of
cells carrying a control retrovirus vector that encodes only a
drug resistance marker (Fig. 4a–d). In addition, expression of ei-
ther WT- or DN-hTERT in the immortal, telomerase-negative
cell line GM847 had no effect on the growth kinetics of these
cells (Fig. 4e).

In contrast to the lack of response seen in GM847 cells after
the introduction of DN-hTERT, cells that were initially telom-
erase-positive and received the DN-hTERT at levels sufficient to
inhibit telomerase activity showed slowed growth and eventu-
ally stopped proliferating (Fig. 4a-d). The onset of cellular arrest
in each cell line was related to their initial telomere length. For
example, the mean telomere length in the colon cancer cell line
LoVo is 2–3 kb (data not shown). After acquiring DN-hTERT,
clonal isolates of LoVo cells did not continue to proliferate long
enough to reach confluence (population doubling 0), whereas
parallel cultures of these cells expressing either WT-hTERT or
the control vector showed no change in growth (Fig. 4a).

Introduction of DN-hTERT into HA-1 and SW613 cells, which
normally maintain longer initial telomere lengths of 3–4 kb and
4–5 kb, respectively (data not shown), did not immediately
cause a growth arrest. Instead, these cells continued to prolifer-
ate for 10 days and 20 days, respectively, before growth arrest
(Fig. 4b and c). In addition, 36M cells (initial telomere length of
5–7 kb; Fig 3a, lanes 1 and 2) expressing DN-hTERT showed no
changes in growth rate until 30–40 days had elapsed (Fig. 4d),
indicating that the rapidity of response to the introduced DN-
hTERT gene depended on the initial length of the telomeres.
The correlation between telomere length and time to growth ar-
rest provided further evidence that DN-hTERT does not have di-
rect cytostatic or cytotoxic effects on rapidly proliferating cells.

DN-hTERT expression and apoptosis
When cells expressing DN-hTERT stopped proliferating, they
showed the morphological characteristics associated with crisis
(Fig. 5a). Large cells with a flattened appearance predominated

Fig. 4 Effects of DN-hTERT on cell proliferation. Clonal isolates analyzed are from cell lines
LoVo a, HA-1 b, SW613 c, 36M d and GM847 cells e; in order of initial telomere length from
shortest (LoVo) to longest (GM847). For each cell line, two clones are shown expressing the
control retrovirus (�, �), WT-hTERT (�, �) or DN-hTERT (�, �).
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Table 1 Expression of DN-hTERT leads to apoptosis in HA-1 cells

% Apoptosis G1/G2

HEK ND 1.1
vector 6.3 0.2
WT-hTERT 10.1 0.8
DN-hTERT, c1 92.4 ND
DN-hTERT, c4 91.1 ND
DN-hTERT, c8 41.0 0.2
DN-hTERT, c10 81.6 0.3

WT-hTERT 8.9 ND
DN-hTERT, c1 42.1 ND
DN-hTERT, c10-1 65.0 ND
DN-hTERT, c11 25.5 ND
DN-hTERT, c15 43.2 ND

Top: % Apoptosis, percentage of cells in a sub-G1 peak, quantified by flow cytometric
DNA analysis; G1/G2, percentage of cells arrested in G1 and G2 after treatment with γ-
radiation (3,000 rad), quantified by flow cytometry, to confirm p53 was non-func-
tional. HEK, parental human embryonic kidney cells, lacking large T antigen. Bottom,
TUNEL analysis showing percentage of cells staining positive for TdT. ND, not deter-
mined; c, clone number.

a b c

d e

LoV HA-1 SW613

GM84736M
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(Table 2). In contrast, multiple clones expressing DN-hTERT
did not form tumors (Table 2). Thus, inhibition of hTERT not
only limited the growth of these cells in vitro but also limited
their tumorigenic capacity in vivo.

Discussion
Several lines of evidence now indicate that activation of telom-
erase and subsequent telomere stabilization are important and
necessary steps in tumorigenesis. The results presented here
show that inhibition of the catalytic subunit of telomerase,
hTERT, results in telomere loss and limits the growth of several
human cancer cell lines. Furthermore, these cells undergo
apoptosis when their telomeres reach a critically short length,
and such cells are no longer tumorigenic in immunodeficient
mice. These results indicate that continuous hTERT activity is
required for the maintenance of the malignant growth pheno-
type of many tumor cells. Moreover, they validate hTERT as an
attractive target for the development
of new anti-neoplastic therapeutics.

Strategies that target the RNA sub-
unit of telomerase with antisense RNA
(refs. 14,41–43) or peptide nucleic
acids44 diminish cellular telomerase ac-
tivity and induce some changes in cel-
lular growth. Those approaches,
however, did not consistently lead to
complete inhibition of telomerase ac-
tivity, and the specific effects of such

agents on both telomere shortening and cell death were
difficult to assess. Here we have shown that inhibition
hTERT reproducibly results not only in telomere short-
ening but also in growth arrest and death in many his-
tologically distinct immortal and malignant cells. These
results demonstrate that complete inhibition of telom-
erase can be achieved by targeting the active site of
hTERT.

Although most human cancers express telomerase,
some tumors maintain telomere length through an un-
defined alternative mechanism34. In Saccharomyces cere-
visiae, the telomerase-independent mechanism to
maintain telomere length involves recombination45,
and in Schizosaccharomyces pombe, cells that lack telom-
erase maintain telomeres either by recombination or by
circularization of their chromosomes46. Cells from late-
generation mice in which the telomerase RNA subunit
has been deleted can still be transformed8; however,
analysis of the telomeres in such immortalized cells
shows that they are maintained at a shortened but sta-
ble length, probably through a mechanism related to
the alternative mechanism9. Although we have not yet
identified cells that survive the period of crisis induced
by DN-hTERT, these observations indicate that tumor

cells subjected to anti-telomerase therapies may acquire re-
sistance through the development of other mechanisms to
maintain telomeres, such as the alternative mechanism.

Mutations of the tumor suppressor gene p53 are found
in at least 50% of human cancers47. As p53 is important in
directing the cellular response to DNA damage, such muta-
tions may be essential during the process of malignant
transformation. In addition, loss of p53 function may ex-
plain in part the common problem of resistance to
chemotherapy and radiotherapy48,49. Furthermore, p53 has
been suggested to be one participant in the cellular re-
sponse to telomere disruption and loss38,50. Here we have
shown that telomere shortening induced by DN-hTERT
leads to apoptosis in a p53-independent manner, indicat-
ing that anti-neoplastic therapies based on inhibition of
hTERT will still be effective in limiting cancer cell growth
even in cells that lack functional p53.

Unlike most conventional chemotherapeutic agents,
agents that target telomerase may not induce cytotoxicity
immediately after administration. Although many tumors
maintain short telomeres51, complete inhibition of tumor
cell proliferation will require continued cell division until
their telomeres reach a critically short length. This lag in
therapeutic response will permit continued tumor cell
growth in the presence of therapy for a period of time de-
pending on the telomere length in the tumor cells at the
time that therapy was initiated and thus may allow clini-

Fig. 5 Expression of DN-hTERT induces apoptosis. a, Phase contrast micro-
graphs demonstrating cellular morphology of 36M cells expressing control vec-
tor, WT-hTERT or DN-hTERT. Arrows indicate large, flat cells reminiscent of cells in
crisis. These large cells constituted most of the later cultures expressing DN-
hTERT, but were not found in cultures expressing control vector or WT-hTERT. b,
36M cells expressing control vector, WT-hTERT or DN-hTERT, analyzed by the
TUNEL assay for apoptosis. Bottom row, Parental 36M cells treated with DNase I
or cisplatin (controls). The exposure time for vector and WT-hTERT samples was
three times longer than that for DN-hTERT.

Vector

Vector

WT-hTERT DN-hTERT

WT-hTERT DN-hTERT

DNase I treatment Cisplatin

Table 2 Effects of DN-hTERT on tumorigenicity in 36M ovarian cancer cells

Number of tumors/
Number of injections Population doubling Mean telomere length (kb)

Vector, c3 6/6 32 5–7
WT-hTERT, c6 6/6 33 6–8
DN-hTERT, c2 0/6 30 ND
DN-hTERT, c6 0/6 34 2–3.5
DN-hTERT, c7 0/6 32 2.5–4.5

Population doubling and mean telomere lengths of cells at the time of injection. ND, not determined; c, clone number.
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cally important tumor cell growth. Moreover, the success of
such strategies will require that telomerase inhibition be main-
tained until this telomere length is achieved. Thus, such anti-
telomerase therapies will probably need to be coupled with
other therapeutic modalities, particularly those that result in
the prior debulking of the tumor mass.

Analysis of the hTERT protein has demonstrated that it is
evolutionarily related to other reverse transcriptases. The suc-
cessful and widespread use of reverse transcriptase inhibitors
such as the nucleoside analogs used in HIV-1-infected individ-
uals makes the development of small molecule inhibitors of
hTERT an achievable prospect. Ideally, such inhibitors should
be specific for hTERT and spare other polymerases in the cell.
Indeed, some but not all nucleoside analogs can inhibit telom-
erase activity52. The results presented here indicate that spe-
cific, potent inhibitors of the hTERT enzyme are likely to be
very effective in limiting the growth of many types of human
cancer cells.

Methods
Generation of retroviruses and cell lines. The breast cancer cell lines
SKBR3 and SW613 and the colon cancer cell line LoVo were obtained from
the American Type Culture Collection (Rockville, Maryland). The ovarian
cell line 36M was a gift from S. Cannistra, and the GM847 cell line was a
gift from O. Pereira-Smith. DN-hTERT was created by substituting the as-
partic acid and alanine residues at positions 710 and 711 with valine and
isoleucine residues, respectively, by site-directed mutagenesis of pCI-neo-
hTERT-HA using the oligonucleotides 5′–ATCACGGGCGCGTACGACAC-
CATCCCCCA–3′ and 5′–CGCGACCTTGACAAAGTACAGCTCAGGCG–3’.
The influenza virus hemagglutinin epitope tag was removed as de-
scribed24. The resulting mutant was sequenced completely and subcloned
into the vector pBABE-puro53. Amphotropic retroviruses were created with
pBABE-puro, pBABE-puro–DN-hTERT or pBABE-puro–hTERT (ref. 24) as de-
scribed27. Cells were selected continuously in puromycin (2 µg/ml). In all
cases, the time at which a culture reached confluence in a 10-cm culture
dish after viral infection, drug selection and ring cloning was called PD
(population doubling) 0 (Fig 1b).

Telomerase assays, RT–PCR and telomere analysis. Cellular extracts as-
sayed for telomerase activity using a PCR-based telomeric repeat amplifica-
tion protocol (TRAP) assay54. For RT–PCR, total cellular RNA was prepared
from cells using RNazol (TelTest B, Friendswood, Texas), and RT–PCR was
done as described27. Telomere length was measured either by hybridizing
a 32P-labeled telomeric (CCCTAA)3 probe to genomic DNA digested with
HinfI and RsaI (ref. 10) separated by conventional or pulse-field elec-
trophoresis, or by flow–FISH (ref. 36).

Analysis of chromosome structure. Metaphase chromosomes were pre-
pared by treatment of cells with 0.1 µg/ml colcemid for 3.5 h, followed
by hypotonic lysis in 0.075 M KCl, and fixation according to standard
methods. Chromosomes were then analyzed by GTG banding55 or by
FISH (ref. 56).

Tumorigenicity assays. The ability of human cells to form tumors in im-
munodeficient mice (Balb/c-ByJ-Hfh11nu; Jackson Laboratory, Bar Harbor,
Maine) was determined as described27.

Apoptosis assays. Apoptosis was assessed by flow cytometric DNA analy-
sis and by using the TdT in situ Apoptosis Detection Kit (Genzyme,
Cambridge, Massachusetts). Both floating and attached cells were col-
lected from each sample. DNA was analyzed by flow cytometry by expos-
ing cells to a solution of hypotonic propidum iodide and quantifying the
fraction of cells containing a sub-G1 peak37,57. For the TUNEL assay, HA-1
cells were collected as described above, fixed for 10 min at room tempera-
ture in 4% paraformaldehyde (diluted in PBS and methanol-free), washed
with PBS containing 1% BSA, and permeabilized with Cytopore following
the manufacturer’s instructions (Genzyme, Cambridge, Massachusetts).

36M cells were grown on coverslips and then fixed and permeabilized as
described above for TdT analysis. The TdT assay was done following the
manufacturer’s instructions (Genzyme, Cambridge, Massachusetts). After
the TdT assay, cells were counterstained with 0.06 µg/ml propidum iodide
and 10 µg/ml RNAase A to analyze the cellular DNA content. To assess p53
function, we analyzed DNA content by flow cytometry 24 h after cells were
exposed to γ-radiation (4,000 rad).
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