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ABSTRACT

Many multimeric transcription factors recognize DNA
sequence patterns by cooperatively binding to bipar-
tite elements composed of half sites separated by a
flexible spacer. We developed a novel bipartite algo-
rithm, bipartite pattern d iscovery (Bipad), which pro-
duces a mathematical model based on information
maximization or Shannon’s entropy minimization
principle, for discovery of bipartite sequence pat-
terns. Bipad is a C++ program that applies greedy
methods to search the bipartite alignment space
and examines the upstream or downstream regions
of co-regulated genes, looking for cis-regulatory
bipartite patterns. An input sequence file with zero
or one site per locus is required, and the left and
right motif widths and a range of possible gap lengths
must bespecified. Bipad can run in either single-block
or bipartite pattern search modes, and it is capable of
comprehensively searching all four orientations of
half-site patterns. Simulation studies showed that
the accuracy of this motif discovery algorithm
depends on sample size and motif conservation
level, but results were independent of background
composition. Bipad performed equivalent with or bet-
ter than other pattern search algorithms in correctly
identifying Escherichia coli cyclic AMP receptor pro-
tein and Bacillus subtilis sigma factor binding site
sequences based on experimentally defined bench-
marks. Finally, a new bipartite information weight
matrix for vitamin D3 receptor/retinoid X receptor a

(VDR/RXRa) binding sites was derived that compre-
hensively models the natural variability inherent in
these sequence elements.

INTRODUCTION

Transcription factors (TFs) bind to specific DNA sequences;
however, analyses of sequences recognized by the same factor
often reveal considerable variability between the binding sites
(1). This variability between different binding sites recognized
by the same TF suggests that probabilistic models, e.g.

position weight matrices (PWMs), can be used to represent
these motifs. These matrices can be used to predict previously
unknown sites. Information weight matrices can be used to
rank the binding affinities of different sites (1,2). The matrix
elements represent contributions of the individual bases to the
protein–DNA interaction. In many cases, TF binding proteins
do not work alone, and regulation results from the cis-effects
of multiple trans-acting factors (3). The affinity of the protein
for any site depends on the sum of all the interactions between
the protein and the cognate DNA segment. The interactions at
individual nucleotide positions may or may not be independent
of one another, however, independence between positions is
often assumed, because these effects tend to be small for most
TFs (1).

A variety of in silico approaches have been used to predict
TF binding sites (TFBSs) (also called motif discovery), since
experimental methods have been laborious, time consuming
and prone to bias (1). It is still not practical to comprehensively
define these motifs by laboratory tests on complete genomic
sequences. Computational methods utilize a set of known
binding sites to extract important residue patterns from
DNA input sequences and provide a representation of the
binding sites that can be used to locate new sites with reason-
able reliability (1,4). Multiple sequence local alignments are a
prerequisite for extracting these patterns as either single- or
multi-block motifs. A one-block motif is deduced from align-
ment of a single, uninterrupted block of nucleotide sequences,
and the corresponding PWM is referred to as a one-block
model. A bipartite pattern consists of two adjacent blocks
separated by a variable length nucleotide spacer (of unspeci-
fied sequence), and two PWMs are needed for the correspond-
ing set of bipartite models. Representation of a binding site
with a bipartite model is appropriate to the extent that overall
conservation across the entire site is improved relative to a
one-block model. In some instances, sequence analysis is
required to elucidate the bipartite nature of an apparent
one-block motif (see details below), since variable spacing
between half sites may not be obvious from the experimental
findings.

PWM-based one-block motif discovery algorithms that
have been developed include CONSENSUS (5), MEME (6),
Gibbs Motif Sampler (7–9) and AlignACE (10). Analogous
objective functions are used in each of these methods, which,
in general, maximize likelihoods or likelihood ratios; how-
ever, the methods primarily differ in their approaches to
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searching the multiple local alignment space. CONSENSUS is
based on a greedy strategy that progressively adds subse-
quences to a set of alignments where each iteration extends
a bounded number of partial alignments. MEME is an
Expectation Maximization (EM)-based method that considers
all sites of the training data simultaneously and over iterative
training converges to a local maxima. Gibbs Motif Sampler
and its variant AlignACE are based on the Gibbs sampling
strategy. These algorithms are popular and reasonably accu-
rate, but each has some limitations (11). A recent algorithm,
GLAM (11), developed by enhancing Gibbs sampling strate-
gies and implementing simulated annealing optimization
methods, appears to perform better than other previous
one-block motif discovery algorithms.

Bipartite models are essentially extensions of one-block
models that incorporate an intervening gap of unspecified
sequence between a pair of adjacent one-block motifs. The
first pairwise motifs (i.e. direct repeats and inverted repeats)
were defined by Staden (12). Subsequently, a fixed gap size
motif algorithm was developed based on the EM method (13),
but the underlying model was still the single-block motif,
rather than a bipartite model. Previous bipartite pattern search
algorithms include BioProspector, which has been extended
from the Gibbs Sampler (14), and Co-Bind, which uses a
Gibbs sampling strategy to model two-block cooperativity
(3). BioProspector is the only available program for discovery
of two-block motifs, however, neither of these approaches
comprehensively recognizes all combinations of orientations
of a bipartite pattern (Figure 1b).

Bayesian models for multiple elements and motifs were
proposed by Liu et al. (8), which were subsequently imple-
mented as a two-block motif search algorithm based on Gibbs
sampling strategies in BioProspector (14). BioProspector uses
a modified Gibbs sampling strategy with zero- to third-order
Markov background models to identify two binding site motifs
within a maximum allowable separation of 40 nt. BioProspec-
tor only detects direct repeats (one type of two-block patterns)
on either the forward or the reverse strand, or a perfect
palindrome.

The information theory-based bipartite model was first pro-
posed and used for the analysis of ribosome binding sites in
Escherichia coli, i.e. Shine–Dalgarno and translation initiation
sites (15). The entropy of individual half-site motifs is mini-
mized, rather than the combined entropy of both half-site
motifs in a single integrated model. An initial one-block align-
ment is used to situate each of the half sites around the same
coordinate; then one-block alignment of each half-side is car-
ried out separately. Currently, this approach detects direct and
imperfect repeats on a single strand, including bipartite pat-
terns separated by long gaps of unspecified sequences.

We present an extension of the bipartite models introduced
by Shultzaberger et al. (15), under the framework of Shannon
information theory (16,17). There are notable differences
between our respective approaches. First, we minimize the
total entropy present in both half sites as an integral model
(rather than as independent half sites). Second, we incorporate
the length of the gap as a penalty (i.e. related to the surprisal of
observing a particular gap length) in the objective function,
and then present a greedy algorithm (9,18) to search for bipar-
tite patterns in the multiple alignment space, based on prin-
ciple of information maximization. The new search algorithm,
known as bipartite pattern discovery (Bipad), searches a mix-
ture of the four types of possible half-site orientations in the
whole alignment space and generates bipartite models. We
then validated this algorithm by constructing simulated, pre-
viously characterized and novel binding sites including (i)
simulated bipartite datasets containing a mixture of four
types of bipartite patterns, (ii) one-block and short-gapped
bipartite patterns for cyclic AMP receptor protein (CRP)
homodimeric binding sites from E.coli, (iii) long-gapped
bipartite patterns for the sigma factor binding sites from Bacil-
lus subtilis and (iv) human vitamin D3 receptor/retinoid X
receptor a (VDR/RXRa) heterodimeric binding sites. Finally,
we compare the performance of Bipad with the other pre-
viously mentioned algorithms.

METHODS

Defining a bipartite pattern

A bipartite pattern (Figure 1a) is an independent functional
unit upstream or downstream of a co-regulated gene, which is
often recognized by a homodimer and heterodimer protein
complex. These patterns are typically characterized [(19,20)
and references therein] by the four possible orientations of
imperfect and perfect repeat units (Figure 1b): (i) Direct
Repeat (DR), (ii) Everted Repeat (ER), (iii) Inverted Repeat
(IR) and (iv) Reversed Direct Repeat (RDR, direct repeat on
the reverse strand). Let q be a type of repeats. q2Q, where
Q = fDR, ER, IR, RDR}. Let type distribution be denoted by

Figure 1. Bipartite patterns on double helical DNA. (a) A bipartite module is an
independent functional unit on the upstream/downstream of a regulated gene
and recognized by a homodimer or heterodimer. We assume that the two
subunits cooperatively bind to the module with constrained spacers. A
bipartite pattern can be expressed as JL<D>JR. Jm is the width of motif m
and D is the gap range as defined in the text. (b) Four possible types of a
bipartite pattern [see (19)]. The arrows point from 50 to 30 direction. Filled areas
are motifs. Four possible types of a bipartite pattern: RDR—reverse direct
repeats, DR—direct repeats, ER—everted repeats and IR—inverted repeats.
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y(Q). All repeats are most probably imperfect and their widths
could be different from each other. We define the term ‘repeat’
to mean a subunit, a block or a half-site motif of a bipartite
pattern, but the half sites are not necessarily composed of
identical or imperfect duplicates of the same sequence. In
fact, two half-site motifs may have the same or different
lengths (but contain related subsequences). The convention
is useful to specify all possible orientations of the relationships
between the half sites.

The gap distance between repeats is flexible. Our algorithm
allows for a gap range of any size. Based on gap length,
bipartite patterns can be divided into two classes: (i) short-
gapped bipartite pattern, two blocks separated by a short gap
distance (gap distance is <10 bp or a DNA helical turn, i.e.
CRP, a homodimer, binding sites and VDR/RXR, a hetero-
dimer, binding sites) and (ii) long gapped bipartite pattern, two
blocks separated by long gap distance (gap size may be >10 bp,
for instance, binding sites for sigma factors of B.subtilis).
Although such distinctions are arbitrary, they may have bio-
logical significance, since they could correspond to structural
features present in either the protein or the nucleic acid. A
short gapped bipartite site is recognized and bound to a TF
binding dimer, such as a homodimer or heterodimer. A long-
gapped bipartite site is consistent with the possibility that two
sub-sites (motifs) are recognized and bound initially by sepa-
rate TFs and subsequently integrated into a single functional
complex, e.g. by DNA looping or formation of secondary
structures.

Bipartite model assumptions

A bipartite model built to simulate a bipartite pattern in geno-
mic sequences has three components: left and right motif
models, and an associated gap function, which is described
by a probability distribution, w(D), determined from the opti-
mal bipartite alignment. The default sequence model is
assumed to be OOPS (one bipartite site occurrence per
sequence in the dataset), but ZOOPS (zero or one bipartite
occurrence per sequence) is also available as an option. A
bipartite pattern consisting of left (L) and right (R) half
sites separated by a distance d is denoted as L<d>R. We
assume that the two half-site motifs are independent but do
not overlap. The gap size (d) is constrained based on experi-
mental observation within the range D = fd: dmin < d < dmax}.
We assume that a priori, d � Uniform(D). This assumption
implies that we deem every possible gap size equally likely
while searching for an optimal pattern.

The left and right motif models are represented by two
nucleotide frequency or weight matrices: ML and MR with
sizes of jAX j · JL and jAX j · JR respectively. JL and JR

are widths of left and right motif, respectively,
AX = fA,C,G,T} and jAX j = 4, the size of nucleotide set.
Let pm(xl) be the probability (frequency) of the nucleotide x at
position l given motif m 2 fL,R}, where xl2AX. pm(xl) is the
element of frequency matrix (i.e. ML or MR). A bipartite model
can be expressed as ML<D>MR or ML<[dmin, dmax]>MR. A
bipartite searching pattern is JL<D>JR or JL<[dmin, dmax]>JR

that allows to search two fixed motif widths separated by a gap
range (e.g. Table 3). The pattern format ML<dc>MR or
JL<dc>JR is graphically displayed as a bipartite sequence
logo (21) or bipartite logo (see Figures 6a–c and 7b and

Table 3) of two half-site motif logos separated by a gap dc,
where dc is the predominant spacing observed. A bipartite
motif found in a single sequence can be denoted as aL<d>aR

where aL and aR are start positions for left and right half-site
motifs, respectively (e.g. see Table 2). Therefore, the relation-
ship aR = aL + JL + d follows from this definition.

Probabilistic model for a bipartite pattern

It is assumed that two half-site motif models (ML and MR) in a
bipartite pattern have independent probability distribution
with a constrained gap size d following some distance prob-
ability distribution, v(D). Each position in a motif is also
assumed to be independent (22). Given a sequence x and
bipartite model, the probabilistic model for a bipartite pattern
can be expressed as

Pðx jML, MR, dÞ = vðdÞ
Y

m2fL;Rg

YJm

l¼1

Y
b2AX

pmðxlÞIb;xl
ðx;m;dÞ

( )
1

where the indicator function Ib,xl
(x,m,d), which depends on x,

m and d equals 0 if xl „ b or m =2 fL,R} or d =2 D and equals 1
otherwise. We see that two motif sub-models are independent,
but subject to a distance constraint. The indicator function
simply shows whether or not a current bipartite pattern is a
valid one. The pattern probability is computed once the bipar-
tite model parameters, including the distance distribution v(D),
are estimated.

Objective function

We used a set of input sequences to estimate the parameters in
Equation 1 based on maximizing information principle
(23,24). Shannon’s entropy or uncertainty (in bits) was used
to define the objective function, ICtotal, which is a function of
two half-site motifs separated by a constrained gap (Equations
2–4) as described previously (15). However, we maximize the
ICtotal as an integral function over the entire binding site rather
than constructing separate models for each individual half site,
as has been reported in (15). The algorithm assumes that two
half-site motifs are independent of each other. The gap penalty
(or surprisal) function g(d) is derived from the gap
probability distribution v(d) which is determined from an
optimal bipartite alignment. We assign a zero penalty to the
most likely distance.

ICtotal = ICðL, R, dÞ 
 gðdÞ ¼ ICðL, dÞ + ICðR, dÞ 
 gðdÞ 2

ICðm, dÞ =
XJm

l¼1

ðlog2 jAX j 
 HmlðX jdÞ 
 eðnÞÞ 3

HmlðXÞ =
X
x2AX

pmðxlÞlog2

1

pmðxlÞ
, AX = fA, C, G, Tg 4

where e(n) is a sample correction (15), n is the number of DNA
sequences, xl2AX, Jm is the width of motif m2fL,R}, pm(xl)
is the probability of x at position l given motif m. pm(xl) can
be computed as a frequency or the estimated probability,
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p̂pmðxlÞ, in a multiple local alignment, p̂pmðxlÞ = ðcðxlÞ + bxÞ=
ðN +

P
x2AX

bxÞ. c(xl) is the count of symbol x at position l,
bx is the pseudo-count (8,25) of x and N is the number of DNA
input sequences in the alignment. Each pseudo-countbx is set to
0.25 · 1.5 (11). It is obvious that the left and right motif sub-
models are subject to a gap constraint. These two motifs are not
permitted to overlap and the gap length range (D) is based on
biological observation. The notation Hml(X j d) indicates that
entropy is subject to a gap constraint d. The penalty function is
simply 
log2(v(d )).

Computing individual information content for a
bipartite pattern

Given a bipartite model and a testing sequence x = x1,x2, . . .
xn, where xl is the nucleotide at position l. Let two sliding
windows with size of JL and JR move along the sequence at
offset of 1 bp, each time at a position each window covers both
forward and reverse strands, and the corresponding informa-
tion contents are computed separately. The distance between
windows is constrained by [dmin, dmax]. Therefore, the
individual information content (Ri) for a bipartite pattern is
computed as

RiðxÞ =
X

m2fL;Rg

XJm

l¼1

�
log2 jAX j 


X
b2AX

log2p̂pmðxlÞIb;xl
ðx;m;dÞ

�( )


 gðdÞ 5

where p̂pmðxlÞ is the estimated probabilities (frequency) of the
nucleotide xl for motif model m at position l. Because each
window covers both strands, we end up with four types of
patterns (Figure 1b) at a time. We use Equation 5 to scan a
sequence for a new site such that its information content (Ri) is
greater than a specified cutoff.

The greedy algorithm

The goal is to maximize the ICtotal in Equation 2 which can be
reduced to minimize the total Shannon’s entropy (Equations 3
and 4). We used a greedy algorithm (18) to search the multiple
local bipartite alignment (MLBA) space (Q) and find an opti-
mal solution to the bipartite pattern search problem. Therefore,
the new objective function is given by

ðM�
L, M�

R,wðdÞÞ = arg min
ða;dÞ2Q

X
m2fL;Rg

XJm

l¼1

HmlðX j dÞ
 !8<

:
9=
; 6

where d 2 D, Q = fðaðiÞ
L 2 A

ðiÞ
L , a

ðiÞ
R 2 A

ðiÞ
R Þ : i = ð1, 2, . . . , NÞg,

A
ðiÞ
L = fa : 1 < a < ‘i 
 JL 
 JR 
 dmin + 1g, A

ðiÞ
R = fa : JL +

dmin + 1 < a < ‘i 
 JR + 1g and ‘i is the length of sequence i.
Obviously Q is the whole MLBA space consisting of all pos-
sible combinations of two motif start positions for N sequences
given a bipartite searching pattern JL<D>JR. We take one bipar-
tite alignment (a, d) which can be computed as (ML, MR) at a
time and hence a total entropy can be computed for each of these
bipartite alignments (see Equation 6). A greedy algorithm
(described in the next section) was applied to search the
MLBA space (Q) and to find the best alignment such that it

gets the minimum total entropy or maximum total information
content. The best alignment corresponds to the best bipartite
model ðM�

L, M�
R,wðdÞÞ. The same idea can be applied to a one-

block model without gap constraint (di = 0 for all i).

Algorithm implementation

The algorithm for building the bipartite model is shown in
Figure 2. The Bipad program generates random seeds as the
initial start positions of bipartite patterns. For each set of seeds,
it sequentially picks up a sequence at a time and enumerates all
possible start positions and all possible gap distances for two
half-site motifs and computes their entropies. Entropies are
stored with their coordinate indices in a vector E. The total
number of legal bipartite combinations for a sequence scanned
is jE j = jD j · (‘i 
 (JL + JR + jD j ) + 1). We keep the
minimum entropy for each sequence and update the frequency
tables (Figure 2). Each pass of this operation is iterated for all
input sequences until the total entropy difference between
consecutive passes exceeds a very small negative threshold
(d). After each of these cycles, the bipartite alignment with the
maximum information content is retained and the above pro-
cedure is restarted for a prescribed number of remaining
cycles. The bipartite model is built based upon the overall
best alignment found among all cycles.

The Bipad algorithm was implemented in C++ and compiled
using GNU C++. Inputs include a DNA sequence file, motif
widths and a gap range specified by the user. The sequence
model can be either OOPS (the default) or ZOOPS. Other
parameters, such as pattern output format and alignment
modes, can be set through the command line. The program
may be run to produce either one-block or bipartite models.
Sites may be aligned on either the forward strand only or on
both strands, and the motif and gap length range can also be
specified. The initial gap length range is selected based on
published experimental data and Bipad is executed (using Perl
scripts) for multiple, different parameter settings. The results
of these scripts are compared to select the models having the
maximal information contents.

Performance evaluation for bipartite model

The performance coefficient (26) was the metric used to eval-
uate the performance of each algorithm for the same set of
input data. Let K

ðiÞ
L and K

ðiÞ
R be the sets of known left and right

motif positions, respectively, in a sequence i and O
ðiÞ
L and O

ðiÞ
R

be the sets of left and right motif positions located by an algo-
rithm. The performance coefficient for a bipartite pattern on
sequence i, ri, is computed as

ri =
XR

m¼L

jKðiÞ
m \OðiÞ

m j
�XR

m¼L

jKðiÞ
m [OðiÞ

m j

�rr =
Xn

i¼1

ri=n 7

For a set of n DNA sequences, we compute the average per-
formance (�rr). If r = 1, then there is an exact match between
predicted and validated site. Ifr=0, then the valid site is missed.
The coefficient for a one-block motif is computed by taking
m=R or m=L, which reduces to the definition given by Pevzner
and Sze (26).
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Other programs used for comparison

To compare the results of Bipad with other one-
block algorithms, we ran the following available algorithms
for one-block motif discovery: Gibbs motif sampler (http://
www.bioinfo.rpi.edu/applications/bayesian/gibbs/gibbs.html)
(7), CONSENSUS (ftp://ftp.genetics.wustl.edu/pub/stormo/
Consensus/) (5) and GLAM (http://zlab.bu.edu/glam/) (11).
BioProspector (http://robotics.stanford.edu/~xsliu/BioPros-
pector/) (14) was compared with Bipad for searching bipartite
or two-block motifs.

RESULTS

Analysis of results from simulated bipartite pattern
datasets

In a DNA sequence set of bipartite patterns, a mixture of four
types of patterns [Imperfect Direct Repeat (DR), Everted
Repeat (ER), Inverted Repeat (IR) and Reverse strand Direct
Repeat (RDR)] may coexist. Bipad defaults to searching for all
of these patterns, however, the search may be limited by the
user to specific patterns.

To test the ability of the algorithm to comprehensively
search for bipartite patterns in all orientations on both strands
(Figure 1b), we simulated binding sites in a variety of
sequence contexts. Each sequence in the dataset is 100 bp
long. The simulated datasets are made of the following
combinations:

(i) Sample size (s): 20 or 100 sequences.
(ii) DNA sequence background distributions (K): (a) uni-

form (A, C, G and T are equally likely occurring), (b)
AT richness (AT content = 60% and GC = 40%) and (c)
GC richness (GC = 60% and AT = 40%). In (b) and (c),
the nucleotides A and T, and G and C are equally likely.

(iii) Gap distribution (w(D)): Let PfY = d} = w(d), PfY =
3 bp} = 0.25, PfY = 4 bp} = 0.50, and PfY = 5 bp} = 0.25.

(iv) Motif conservation levels (z): (z) high, (b) mid and (c)
low. A high conservation motif is formed such that at any
position a dominant nucleotide has a probability of 0.91
and each of the rest is 0.03 (27) or the information con-
tent at position l (ICl) = 1.42 bits. A mid conservation
motif is formed such that at any position of a dominant
nucleotide has a probability of 0.79 and each of the rest is
0.07 or ICl = 0.93 bits. A low conservation motif is

Figure 2. An algorithm for building bipartite model. A bipartite alignment for sequence i is to start from current positions and then move back and forth along the
sequence until every possible combination of a bipartite pattern is enumerated. Each move is subject to a gap range. We record total entropy (H) and store it together
with its associated motif start coordinates in a vector E for each non-overlapping combination of patterns. The best alignment with the minimum entropy found in E is
kept after each of such scanning operations.
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formed such that at any position of a dominant nucleotide
has probability of 0.70 and each of the rest is 0.10 or
ICl = 0.64 bits. Let P(z) be the probability of z level
conservations on half-site motifs. For example, a bipar-
tite combination (High, High) has the probability
P(z1 = high, z2 = high) = 1.0, meaning that both left
and right half-site motif conservation levels are high.

(v) Bipartite pattern conservation level distribution j(z1, z2):
(a) (High, High); (b) (Mid, Mid); and (c) (Low, Low).

(vi) Bipartite pattern implanted (JL[dmin, dmax]JR):9 <
[3,5] > 9.

(vii) Type distribution of bipartite patterns y(Q):
y(DR) = 0.70, y(ER) = 0.10, y(IR) = 0.10 and
y(RDR) = 0.10.

The simulation procedure for generating a bipartite dataset is
presented in Figure 3. The simulated datasets were used to test
Bipad’s capability to detect a mixture of four types of bipartite
patterns planted in different background sequences.

Bipad successfully located the correct positions of the
embedded bipartite sites (Table 1). The bipartite search pattern
is set to 9<[3,5]>9, the pattern we embedded during the simu-
lation. We did not compare simulations of Bipad with Bio-
Prospector, because the latter failed to detect almost all cases
in the simulated datasets. BioProspector was designed to
search for one type in a run, either direct repeats (DR/
RDR) or palindromic sequence pairs, not a mixture of four
possible types. Bipad scanned both forward and reverse
strands, looking for four possible types of a bipartite pattern
(Figure 1b). Based on the experimental ground truth, the aver-
age performance with >0.5 signifies successful detection of a
bipartite pattern in the dataset. In simulated bipartite datasets,
we generated a mixture of all four types of bipartite patterns

(Figure 1b) and Bipad successfully detected planted sites in
each of these circumstances (Table 1).

Simulation studies also showed that the performance or
accuracy of motif discovery algorithms depends not only on
sample size but also on the motif conservation level. Bipad
successfully detected binding sites embedded in a uniform
background sequence, and its performance increased to 1.0
(exact match with all implanted sites). Bipad’s performance
increases from 0.73 to 1.0 as the conservation level increases
from low (0.64 bits per base), through mid (0.93 bits per base)
to high (1.42 bits per base). The bipartite pattern conservation
level was increased in both small and large sample datasets
(see Table 1 for details). Mid- and high levels of conservation
had very similar performance criteria. In large datasets, Bipad
successfully detected all patterns of nine total combinations
and had nearly similar performance, independent of the
background distributions.

l

Figure 3. Procedure for generating bipartite dataset. This is an iterative process until a given number of sequence j s j is generated.

Table 1. Results for simulated bipartite datasetsa

Sample
sizeb

Bipartite conservation,
level distribution

Background distribution
Uniform AT-rich GC-rich

Small (High, High) 1.0 – 0.0 1.0 – 0.0 1.0 – 0.0
(Mid, Mid) 0.93 – 0.06 0.96 – 0.03 0.96 – 0.02
(Low, Low) 0.73 – 0.16 0.44 – 0.20 0.31 – 0.19

Large (High, High) 1.0 – 0.0 1.0 – 0.0 1.0 – 0.0
(Mid, Mid) 0.95 – 0.05 0.93 – 0.06 0.94 – 0.03
(Low, Low) 0.77 – 0.16 0.76 – 0.17 0.80 – 0.14

aBipartite alignments were applied on both strands. The number in the cell is the
average performance calculated as in Equation 7 plus its standard error. The
performance coefficient < 0.50 is considered as failure detection (number in
boldface).
bSmall sample size is 20 sequences and large sample size is 100 sequences.
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The performance also relies to a limited degree on back-
ground composition, especially for small datasets. Although
our bipartite models assumed a uniform background, algorith-
mic performance was also adequate for non-uniform back-
grounds (Table 1). In AT-rich sequence sets, Bipad
behaved the same way as it did in the uniform background,
except for the failure to detect a sufficient percentage of bind-
ing sites in a small sample size and low bipartite pattern con-
servation level dataset (performance is 0.44). In simulated
binding sites within a GC-rich background, the Bipad perfor-
mance was similar to that of the AT-rich background. Simula-
tion results showed that Bipad was able to detect a mixture of
four types of bipartite patterns in all three backgrounds. The
accuracy increases as the degree of motif conservation
increases. Larger sample sizes are needed to correctly detect
a set of binding sites with a lower overall conservation. The
predicted information content (bits per base pair) was very
close to the expected IC (Figure 4) for all three background
compositions. In each case where a low conservation level was
expected, the predicted IC value was a little higher than what
was anticipated. Figure 5 shows the bipartite motif IC distri-
butions for three different background sequences. In each case
we can see that highly conserved motif IC curves almost
separated from the background distribution. This explained
why Bipad was able to detect all embedded sites of high
conservation patterns (�rr = 1:0) regardless of background. On
the other hand, in each case, the IC distribution for motifs with
low levels of conservation overlapped to some extent with the
corresponding distribution of background sequences. There is a
greater overlap between these distributions for AT- and GC-rich
backgrounds, suggesting that there is less power to detect

embedded patterns with low levels of conservation in these
backgrounds for small samples (boldface values in Table 1).

Algorithm comparison for CRP dataset

Cyclic AMP receptor protein. CRP protein is a positive control
factor necessary for the expression of catabolite repressible
genes. It is a prokaryotic dimeric DNA binding protein that
binds to adjacent DNA major grooves in a bipartite pattern. It
is known that there is at least one CRP-binding site in each of
the 18 sequences and the location of these binding sites have
been determined by DNA footprinting studies (28). Each
sequence is 105 bp in length and each determined motif
width is 22 bp long. The nucleotide composition of the
CRP-binding sequences is A (30.26%), C (18.25%), G
(20.90%) and T (30.58%), a background rich in A and T.
This CRP-binding site data has been commonly used as a
golden standard for testing motif discovery algorithms
(9,14,28–30). We used the dataset to verify our algorithm
and for comparison with other one- and two-block motif dis-
covery algorithms (Table 2). The Bipad algorithm was able to
recognize one-block or bipartite patterns, regardless of which
type of motif was selected.

We set the motif length to 22 bp for one-block motif models
based on experimentally defined single-block sites. For bipar-
tite models, we initially set each of half-site motif width to 8 bp
and allowed for a gap ranging from 2 to 6 bp (denoted as
8<[2,6]>8 in bipartite pattern format). Subsequently, the dis-
tribution of average information across the binding site justi-
fied reducing the bipartite search pattern to 5<[2,9]>8 (see
below). This constraint permits the length of the entire pattern

Figure 4. Plots of the predicted information content (IC, bits per base pair) versus the expected IC for three different background sequence compositions: (a) Uniform;
(b) AT-Rich; and (c) GC-Rich. Each graph shows three repetitive simulations for large (100 sequences) and small sample (20) sizes.
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to range from 15 to 22 bp. Since one motif per sequence is
assumed, if a program output contained more than a single site
in a sequence, the one most closely resembling previously
identified sites was selected for comparison.

One-block patterns. The results of one-block pattern compar-
isons (listed in Table 2) show that both Bipad and GLAM (11)
correctly located all motif sites in each of the 18 sequences.
The average performance for both Bipad and GLAM (0.92 and

Table 2. Comparison results for CRP-binding dataa

Sequences Footprint coordinates Single-block motif (width = 22 bp) Bipartite motifb

GLM Gibbs Consen Bipad BioProspector Bipad

cole1 17, 61 61 64 64 62 64<3>72 64<6>75
ecoarabop 17, 55 55 58 58 56 58<3>66 58<6>69
ecobglr1 76 76 79 79 77 79<3>87 79<6>90
ecocrp 63 63 66 66 64 64<5>74 64<8>77
ecocya 50 50 44 47 49 14<2>21 53<6>64
ecodeop 7, 60 7 54 4 59 10<3>18 10<6>21
ecogale 42 42 45 27 43 45<3>53 47<4>56
ecoilvbpr 39 39 42 42 40 16<7>28 42<8>55
ecolac 9, 80 9 12 12 8 12<3>20 84<5>94
ecomale 14 14 8 11 13 17<3>25 17<6>28
ecomalk 29, 61 61 55 58 60 32<9>46 64<8>77
ecomalt 41 41 35 38 40 44<9>58 44<6>55
ecoompa 48 48 42 45 47 47<7>59 51<6>62
ecotnaa 71 71 74 74 72 74<3>82 74<6>85
ecouxul 17 17 20 20 16 80<3>88 20<8>33
pbr-p4 53 53 56 56 52 56<3>64 56<6>67
trn9cat 1, 84 84 78 81 83 2<5>11 2<5>12
tdc 78 78 72 81 77 81<3>89 81<6>92
�rrc — 1.0 0.69 0.74 0.92 0.67 0.78
Standard error — 0.0 0.09 0.13 0.0 0.31 0.06

aThe optimal bipartite searching pattern used here was 5<[2,9]>8 and we set 500 cycles were run for all training procedures.
bA bipartite motif on a sequence is expressedas aL<d>aR. The numberbetween the brackets (d) is the gap size, the numberon the left-side of the bracket (aL) denotes the
first motif start position and on the right-side is the second motif start position (aR).
c�rr is the average performance, �rr =

Pn
i¼1 ri=n, where ri is the performance coefficient for sequence i. The performance coefficient for a bipartite pattern was

calculated as if it were a one-block motif, because the second motif positions are unknown in this case.

Figure 5. Plots of the motif information content (bits) distributions for three different simulated backgrounds where bipartite motifs were implanted: (a) uniform; (b)
AT-rich and (c) GC-rich. Each graph shows the IC distributions of bipartite motifs found by Bipad in pure background sequences (blue line), patterns with either high
(red line) or low (orange line) degree of conservation embedded in the same background.
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1.0, respectively) were excellent and nearly equivalent. Bipad
predicted an alignment that was a single nucleotide offset from
the footprints of experimentally identified CRP sites (Table 2).
This occurred because the experimentally determined motifs
exhibit lower conservation at their terminal positions (Figure
6c), but exhibit approximately equal information contents at
these positions. Because Bipad maximizes information across
the site, small differences in information content at these posi-
tions can result in realignment of experimentally defined bind-
ing sites. In contrast, the average coefficient for CONSENSUS
was 0.74 and has one predicted miss, as indicated by a larger
variance (0.13). The lower performance of CONSENSUS
resulted from the fact that most positions it located had a 3
bp offset from identified sites (Table 2); and the whole pattern
was shifted 3 bp downstream relative to the original data. The
Gibbs motif algorithm failed to locate a significant percentage
of sites (average performance is 0.69). The most highly con-
served positions (shown in boldface) of the consensus seq-
uence derived from the one-block search option of Bipad,
WNTGTGADCNAYNTCACADWWW, form a palindrome
separated by a 6 nt gap.

Short gapped bipartite pattern. BioProspector correctly
locates sites specified as perfect palindromes with a

constrained gap distance ranging from 1 to 4 bp (14). How-
ever, as we can see in Figure 6a–c, the bipartite binding site
lacks perfect symmetry and is a partially imperfect palin-
drome, possibly because of the inherent asymmetry of the
operon promoter region. Unlike BioProspector, Bipad does
not require an assumption that the sequence pattern has a
palindromic structure, since the algorithm recognizes all
four types of patterns including perfect and imperfect
palindromes.

Bipad and BioProspector were compared by searching the
CRP data with the 5<[2,9]>8 search pattern on the same strand
(results shown in Table 2). Bipad correctly located all sites
(average performance = 0.78), whereas BioProspector had a
performance of 0.67. A larger variance (0.31) indicated three
predicted misses for BioProspector. For the initial search of the
8<[2,6]>8 pattern, BioProspector missed seven predicted
sites, while Bipad missed a single site (data not shown).
After removing noise (defined as IC value of �0 bits) at posi-
tions within the left site (position 1, 2 and 3; see Figure 6a), the
performance of both Bipad and BioProspector were improved
for the resulting bipartite search pattern, 5<[2,9]>8 (Table 2).
BioProspector’s previously reported optimal search pattern
was a 8<[1,4]>8 palindrome (14). When Bipad was used to
search this data, the performance coefficient increased to 0.79.

Figure 6. Sequence logos for one-block and bipartite models of CRP-binding sites. (a) Bipartite pattern 8<3>8, dominant spacer length is 3 bp; information in left half
site is dominated by five positions (
4 to 0) with positions 1, 2, and 3 considered noise; total information for left site is Rseq(left) = 6.03 bits per 8 bp and for the right-
site Rseq(right)= 6.62 bits per 8 bp; after removing these noise signals the total information for both half sites increased and the model was reduced to that seen in panel
(b). (b) Bipartite pattern 5<6>8, dominant spacer lengths are 6 bp; total information for left site is Rseq(left) = 5.65 bits per 5 bp and for right-site Rseq(right) = 7.02 bits
per 8 bp. (c) 5<6>8 extended to 8<6>8 with Rseq(left) = 6.04 bits and Rseq(right) = 7.19 bits. (d) Motif width of one-block model is 22 bp as demonstrated in DNA
footprint studies; the total information for this model is Rseq(one-block) = 10.42 bits per 22 bp. Thus, the bipartite model contains >2 bits per site more than the one-
block model and it is obvious from the distribution of information in the logos that the pattern can be subdivided into two half sites.
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Considering that CRP homodimerizes, we extended our bipar-
tite pattern to 8<6>8 which further increased the performance
coefficient to 0.91 (Figure 6c). Although the 5<6>8 pattern
exhibits the maximum information content and is therefore
considered optimal, extension of the 5 nt motif to 8 nt better
fits the experimentally identified binding sites. The 8<6>8
model does not contain any more information per base pair
than the 5<6>8 model (see below). The consensus bipartite
binding sequence deduced by Bipad is WWNTGTGA<6>
TCACANWW, with the subsequences in boldface forming
a palindrome. The 8mer half sites form an imperfect palin-
drome. The logo shows that the most highly conserved posi-
tions correspond to critical contacts required for formation of
the complex with CRP (31).

Analysis of the CRP-binding data showed that the bipartite
model generated with Bipad exhibited a higher level of
sequence conservation than the one-block model. Figure 6
shows the sequence logos for CRP one-block and bipartite
models. L and R half-site motifs are evident in the 22 bp
one-block model. The total information in the one-block
model is Rseq(one-block) = 10.42 bits in the 22 bp site.
Sequence logos showed that the bipartite model 8<3>8 can
be reduced to an optimal pattern 5<6>8, as very little informa-
tion, is contained in the terminal 3 bp of the L motif of the
8<3>8 logo. The nucleotide at position 
2 in the 8<3>8 model
is random and positions –3 and –4 exhibit very little (�0.3
bits) information (Figure 6c). In the 8<3>8 model (Figure 6a),
the information content for left site is Rseq(left) = 6.04 bits per
8 bp site, whereas Rseq(right) = 6.62 bits for the 8 bp R site. The
new model, after removing the noise from the left site, is
shown in Figure 6b. Despite removing three positions from
the PWM, both half sites gained a small amount of informa-
tion: Rseq(left) = 5.65 bits for 5 bp L site and Rseq(right) = 7.02
bits for the 8 bp site. The bipartite model gained more than 2
bits of information per site in comparison with the correspond-
ing one-block model.

The optimal pattern found by Bipad is very close to
5<[7,9]>7, similar to the results reported by BioOptimizer
(27). Bipad built these two bipartite models and ended up
with similar results (Figure 6a–c), except that the site infor-
mation content increased. Results also showed that the most
probable width of CRP-binding sites is 19 bp (5 + 6 + 8), with
the pattern shifted 3 bp downstream from the original site
(Table 2). We used the experimentally determined single-
block motifs to evaluate bipartite pattern recognition.
Although a lower performance coefficient was obtained
(because the experimentally determined bipartite coordinates
were not available), Bipad detected all the identified single
block sites. Interestingly, the optimal motif length inferred
from Bipad is in agreement with that automatically detected
by GLAM in a one-block model (11).

Bipartite modeling on binding sites of sigma factors

Long gapped two-block pattern: sigma factors. We examined
datasets for six different two-block sigma transcription factors
sB, sD, sE, sF, sG and sH from B.subtilis. All the binding site
sequences for sigma factors were extracted from the DBTBS
transcriptional database (http://dbtbs.hgc.jp/) (32). The site
length varies among sequences recognized by each of these
factors. The bipartite patterns reported for the sE consensus

sequences are Ata<[16,18]>cATAcanT, the sF bipartite bind-
ing patterns are GywTA<15>GgnrAnAnTw and the bipartite
pattern of sH binding sequences are RnAGGAawWW<
[11,12]>RnnGAAT (27,33).

The relative performances of Bipad and BioProspector were
compared for 53 binding sites for sB (RNA Polymerase gen-
eral stress factor sigma), 33 sites for sD (RNA polymerase
flagella, motility, chemotaxis and autolysis sigma factor), 62
sites for sE [RNA polymerase sporulation mother cell-specific
(early) sigma factor], 14 sites for sF [RNA polymerase
sporulation forespore-specific (early) sigma factor], 33 sites
for sG [RNA polymerase sporulation forespore-specific
(late) sigma factor] and 23 sites for sH (RNA polymerase
vegetative and early stationary-phase sigma factor). In our
analyses, sequences containing uncharacterized, unknown
binding sites were excluded and all bipartite search patterns
(column 3 in Table 3) were determined based on sites identi-
fied previously.

As the sites identified are known to reside on the same
strand, we searched for the DR type bipartite pattern on a
single strand. Table 3 shows that both Bipad and BioPros-
pector detected almost all the long-gapped bipartite patterns
among the sigma factor sites with various performance coef-
ficients. In those instances where the low performance
detection was evident, the predicted sites were shifted a
few base pairs upstream of the validated sites, as we
selected the longest identified site for the search pattern
length. The bipartite logos in Table 3 were generated
from the Bipad output. For purposes of comparison with
documented motifs, the consensus sequence derived from
each logo is also indicated in Table 3; however, the weight
matrix more accurately represents these motifs, especially at
positions containing little or no information. The gap length
between motifs represented the central gap size as expressed
in ML<dc>MR. Bipad generated the sigma factors’ bipartite
patterns resembling their prior consensus bipartite patterns
(i.e. sE, sF and sH).

Multiple local alignments of VDR/RXR heterodimeric
binding sequences

The VDR is a member of the class of nuclear hormone tran-
scription factors that binds as a heterodimer complex with
RXR to bipartite vitamin D response elements (VDREs) to
activate transcription of downstream target genes. A new
model of VDREs was developed using Bipad. Previous models
of VDR/RXR binding sites derived from SELEX experiments
select for strong binding sites resembling a consensus
sequence (34). To elucidate the VDR/RXR binding patterns
from a set of natural VDREs, we collected 26 sites from
published studies demonstrating experimentally validated
VDREs (35–41), and extracted extended versions of these
sequences in their natural context. Figure 7a shows that
Bipad generated one-block sequence logo for the natural bind-
ing sites. While it is comparable to the logo displayed in the
JASPAR database (34), the overall level of conservation is
lower in the model composed of natural sites. The average
information content for the 16mer motif is Rseq = 10.59 bits
and the one-block consensus sequence is RRGKTCANNR-
RGKTCA. The VDR/RXR bipartite logo and alignment
derived by Bipad are indicated in Figure 7b and c,
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respectively. The bipartite search pattern was set to 7<[0,6]>7,
resulting in information contents for left and right half sites
of 6.76 and 6.57 bits, respectively. The total information in
the bipartite model exceeds the one-block motif by 2.74 bits
relative, indicating that it more accurately depicts sequence
conservation across the binding site, and therefore, the con-
tacts recognized by the heterodimer. We noticed that the one-
block model in the JASPAR database consists predominantly
of strong VDRE binding sites (because it is based entirely on
10 binding sites derived from SELEX experiments) and has
information content, Rseq (15mer motif) = 15.70 bits. Both
single-block and bipartite models based on natural sites more
comprehensively depict the potential of VDR/RXR to recog-
nize binding sites in the genome in vivo, since both strong
and weak binding sites were included. For example, in the
JASPAR one-block model, an invariant ‘T’ was detected at
the equivalent position +8 in the sequence logos shown in
Figure 7. However, oligonucleotides with either a ‘T’ or ‘G’
at that coordinate have approximately the same affinity for
VDR/RXR heterodimer binding (35), as manifested in
our models (see Figure 7a and b on position 8). The
VDR/RXR bipartite consensus sequence is derived as
DRGKTCA<2>DRGKTCA. The predominant nucleotide
spacer between the half sites is 2 bp in length and ranges
from 0 to 6 nt in length. While the core RGKTCA consensus
repeat element is very similar to that obtained from a set of
experimentally derived (SELEX) high affinity sites, the nat-
urally derived binding sites showed significantly greater
sequence variation.

DISCUSSION

We developed and tested an algorithm for modeling bipar-
tite DNA binding sites based on minimizing Shannon
entropy across the entire site. Although these models are
characterized by their simplicity and generalizable assump-
tions, the performance of these models for actual or simu-
lated binding site data is comparable or improved over
other, more complex approaches. Successful detection of
binding sites with Bipad illustrates the preference for
using the simplest pattern recognition methods to explain
the available data (42).

We applied a greedy algorithm to search the bipartite align-
ment space for the patterns using information maximization
methods. Since the models are based on Shannon’s informa-
tion theory, the background composition is uncorrected for
non-uniformity, however, biased distributions did not signifi-
cantly impact either the models or binding site detection.
Using simulated binding site distributions, this assumption
could be generalized, since it represents the average situation.
In comparison with other popular algorithms using real bind-
ing site datasets (CRP and sigma factors), Bipad has good
performance in both one- and two-block motif discovery.
Bipad detected a more flexible VDRE core repeat than tradi-
tional one-block alignment methods.

The greedy search with cyclic randomized initiation can
avoid the occurrence of potential local minima, which has
been observed using MEME (6). A single cycle starting
from a set of random seeds is not sufficient to approximate
an optimal solution, because of the possibility that it may

Table 3. Comparison of bipartite pattern recognition algorithms for Sigma factor binding sites in B.subtilis

*The data in each cell are the average performance and its standard error. The average performance is calculated as �rr =
Pn

i¼1 ri=n, where ri is the performance
coefficient for sequence i.
yA bipartite logo is expressed as ML<dc>MR, ML and MR is the frequency matrices for left and right motifs with width JL and JR respectively, dc is the central gap
distance. Half-site sequence logos were drawn based upon frequency matrices ML and MR respectively and had gap dc labeled in between. Bipartite logos were
generated based upon the bipartite models from Bipad. A bipartite logo is drawn with our program Bipad_logo.pl which is based on two programs, makelogo (21) or
glam_logo.pl (http://zlab.bu.edu/glam/), both of which generate one-block sequence logos (21).
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converge to local minima. Additional cycles decrease the like-
lihood of such false convergence. Our simulation experiments
showed that, in general, 500 cycles were sufficient to approx-
imate an optimal solution. Approximately 15 s were required
to complete bipartite training on the CRP dataset using a 1.2
GHz computer. In each cycle, the greedy search guarantees a
convergence (e.g. Figure 2) and the computing cost is
O(N· jE j ) per cycle.

Low-complexity patterns, such as poly(A) or poly(T) tracts,
may frequently occur in some training sets and in eukaryotic
genomes. The results of our simulation studies imply that
backgrounds enriched for these sequences may mislead infor-
mation content-oriented pattern discovery algorithms. These
types of repetitive elements should be masked with programs
such as RepeatMasker (http://www.repeatmasker.org/) (43),
nseg (ftp://ftp.ncbi.nih.gov/pub/seg/nseg/) and dust (ftp://
ftp.ncbi.nih.gov/pub/tatusov/dust/), since such sequences
have been found to affect multiple local alignments of target
binding sites (11).

A reasonable hypothetical bipartite search pattern is
required to perform meaningful sequence alignments and
thus to accurately locate real binding sites. Bipad can automate
the refinement procedures by minimizing entropy and

removing potential sources of noise, increasing the likeli-
hood that the bipartite model will be biologically significant.
It has been suggested that simulated annealing is efficient
and better for one-block motif discovery than Gibbs sam-
pling (11). Our greedy searching algorithm for bipartite
pattern discovery could be seen as a special case of simu-
lated annealing method. While it converges much faster
than the simulated annealing method in a single cycle, it
requires a greater number of cycles to reach the global
minima.

The individual information content of a binding site is
related to the enthalpy of its interaction with the protein recog-
nizer (44). The information contents of eukaryotic binding
sites identified with one-block and bipartite models built
with Bipad have also been related to experimentally measured
binding affinities (45,46).
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Figure 7. Sequence logos of VDR/RXR heterodimeric binding sites. (a) Sequence logo based on 26 VDR/RXR binding sites. One-block alignment was performed by
Bipad. Rseq(16-mer motif) = 10.59 bits. (b) Twenty-six natural binding sites were aligned by Bipad as a bipartite pattern. The bipartite pattern 7<[0,6]>7 has the
maximum information content of all possible patterns. Rseq(7mer left motif) = 6.76 bits and Rseq(7mer right motif) = 6.57 bits. (c) Bipartite multiple alignment result
with flexible spacing between directly repeated motifs. The left and right motifs are shown in red and blue upper-case, respectively. Nucleotides within the gap
interval between two motifs are indicated in lower-case. Dashes are added to facilitate alignment of the half sites and to indicate the lengths of the spacers in each
binding site.

4990 Nucleic Acids Research, 2004, Vol. 32, No. 17

http://www.repeatmasker.org/
ftp://ftp.ncbi.nih.gov/pub/seg/nseg/
ftp://


REFERENCES

1. Stormo,G.D. (2000) DNA binding sites: representation and discovery.
Bioinformatics, 16, 16–23.

2. Gadiraju,S., Vyhlidal,C., Leeder,J.S. and Rogan,P.K. (2003)
Genome-wide prediction, display and refinement of binding sites
with information theory-based models. BMC Bioinformatics, 4, 38.

3. GuhaThurta,D. and Stormo,G.D. (2001) Identifying target sites for
cooperatively binding factors. Bioinformatics, 17, 608–621.

4. Staden,R. (1984) Computer methods to locate signals in nucleic acid
sequences. Nucleic Acids Res., 12, 505–519.

5. Hertz,G.Z. andStormo,G.D. (1999) IdentifyingDNA and proteinpatterns
with statistically significant alignments of multiple sequences.
Bioinformatics, 15, 563–577.

6. Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. Proceedings of the
Second International Conference on Intelligent Systems for Molecular
Biology, Stanford, CA, AAAI Press, Bethesda, MD, pp. 28–36.

7. Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F.
and Wootton,J.C. (1993) Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment. Science, 262, 208–214.

8. Liu,J.S., Neuwald,A.F. and Lawrence,C.E. (1995) Bayesian models for
multiple local sequence alignment and Gibbs sampling strategies.
J. Am. Stat. Assoc., 90, 1156–1170.

9. Liu,J.S. (2001) Monte Carlo Strategies for Scientific Computing.
Springer Verlag, NY.

10. Roth,F.R., Hughes,J.D., Estep,P.E. and Church,G.M. (1998) Finding
DNA regulatory motifs with unaligned non-coding sequences clustered
by whole-genome mRNA quantitation. Nat. Biotechnol., 16, 939–945.

11. Frith,M.C., Hansen,U., Spouge,J.L. and Weng,Z. (2004) Finding
functional sequence elements by multiple local alignment. Nucleic
Acids Res., 32, 189–200.

12. Staden,R. (1989) Methods for calculating the probabilities of finding
patterns in sequences. CABIOS, 5, 89–96.

13. Cardon,L.R. and Stormo,G.D. (1992) An expectation maximization
algorithm for identifying protein binding sites with variable gaps from
unaligned DNA fragments. J. Mol. Biol., 223, 159–170.

14. Liu,X., Brutlag,D.L. and Liu,J.S. (2001) BioProspector: discovering
conserved DNA motifs in upstream regulatory regions of
co-expressed genes. Pac. Symp. Biocomput., 6, 127–138.

15. Shultzaberger,R.K., Bucheimer,R.E., Rudd,K.E. and Schneider,T.D.
(2001) Anatomy of Escherichia coli ribosome binding sites.
J. Mol. Biol., 313, 215–228.

16. Shannon,C.E. and Weaver,W. (1949) The Mathematical Theory of
Communication. The University of Illinois Press, Urbana, IL.

17. Cover,T.M. and Thomas,J.A. (1991) Elements of Information Theory.
John Wiley & Sons, Inc., London.

18. Cormen,T.H., Leiserson,C.E. and Rivest,R.L. (2001) Introduction to
Algorithms. The MIT Press, Cambridge, MA.

19. Handschin,C. and Meyer,U.A. (2003) Induction of drug metabolism:
the role of nuclear receptors. Pharmacol. Rev., 55, 649–673.

20. Kliewer,S.A., Goodwin,B. and Willson,T.M. (2002) The nuclear
pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr.
Rev., 23, 687–702.

21. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new way
to display consensus sequences. Nucleic Acids Res., 18, 6097–6100.

22. Berg,O.G. and von Hippel,P.H. (1987) Selection of DNA binding sites by
regulatory proteins: statistical-mechanical theory and application to
operators and promoters. J. Mol. Biol., 193, 723–750.

23. Schneider,T.D. and Mastronarde,D.N. (1996) Fast multiple alignment of
ungapped DNA sequences using information theory and a relaxation
method. Discr. Appl. Math., 71, 259–268.

24. Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press UK, London.

25. Brown,M., Hughey,R., Krogh,A., Mian,I.S., Sjolander,K. and
Haussler,D. (1993) Using Dirichlet Mixture Priors to Derive Hidden
Markov Models for Protein Families. Proceedings of the First
International Conference on Intelligent Systems for Molecular Biology,
AAAI Press, Menlo Park, CA, pp. 47–55.

26. Pevzner,P.A. and Sze,S.-H. (2000) Combinatorial approaches to finding
subtle signals in DNA sequences. Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology, La Jolla,
CA. AAAI Press, Heidelberg, Germany, pp. 269–278.

27. Jensen,S.T. and Liu,J.S. (2004) BioOptimizer: a Bayesian scoring
function approach to motif discovery. Bioinformatics, 20,
1557–1564.

28. Stormo,G.D. and Hartzell,G.W. (1989) Identifying protein-binding
sites from unaligned DNA fragments. Proc. Natl Acad. Sci. USA, 86,
1183–1187.

29. Liu,J.S. (1994) The collapsed Gibbs sampler in Bayesian computations
with applications to a gene regulation problem. J. Am. Stat. Assoc.,
94, 958–966.

30. Lawrence,C.E. and Reilly,A.A. (1990) An expectation maximization
algorithm for the identification and characterization of common
sites in unaligned biopolymer sequences. Proteins:
Struct. Func. Genet., 7, 41–51.

31. Gunasekera,A. Ebright,Y.W. and Ebright,R.H. (1992) DNA sequence
determinants for binding of the Escherichia coli catabolite gene
activator protein. J. Biol. Chem., 267, 14713–14720.

32. Makita,Y., Nakao,M., Ogasawara,N. and Nakai,K. (2004) DBTBS:
database of transcriptional regulation in Bacillus subtilis and
its contribution to comparative genomics. Nucleic Acids Res., 32,
D75–D77.

33. Helmann,J.D. and Moran,C.P. (2002) RNA polymerase and sigma
factors. In Sonenshein,A.L., Hoch,J.A. and Losick,R. (eds), Bacillus
Subtilis and Its Closest Relatives. ASM Press, Washington, DC.

34. Sandelin,A., Alkema, Engström,P., Wasserman,W. and Lenhard,B.
(2004) JASPAR: an open access database for eukaryotic transcription
factor binding profiles Nucleic Acids Res., 32 (Database issue).

35. Colnot,S., Lambert,M., Blin,C., Thomasset,M. and Perret,C. (1995)
Identification of DNA sequences that bind retinoid X receptor-
1,25(OH)2D3-receptor heterodimers with high affinity. Mol. Cell.
Endocrinol., 113, 89–98.

36. Jimenez-Lara,A. and Aranda,A. (1999) The vitamin D receptor binds
in a transcriptionally inactive form and without a defined polarity on a
retinoic acid response element. FASEB J., 13: 1073–81.

37. Papagerakis,P., Hotton,D., Lezot,F., Brookes,S., Bonass,W.,
Robinson,C., Forest,N. and Berdal,A. (1999) Evidence for regulation
of amelogenin gene expression by 1,25-dihydroxyvitamin D(3) in vivo.
J. Cell. Biochem., 76, 194–205.

38. Toell,A., Polly,P., Carlberg,C. (2000) All natural DR3-type vitamin D
response elements show a similar functionality in vitro. Biochem. J., 352,
301–309.

39. Takeshita,A., Ozawa,Y. and Chin,W. (2000) Nuclear receptor
coactivators facilitate vitamin D receptor homodimer action on direct
repeat hormone response elements. Endocrinology, 141, 1281–1284.

40. Fujisawa,K., Umesono,K., Kikawa,Y., Shigematsu,Y., Taketo,A.,
Mayumi,M. and Inuzuka,M. (2000) Identification of a response element
for vitamin D3 and retinoic acid in the promoter region of the human
fructose-1,6-biphosphatase gene. J. Biochem., 127, 373–382.

41. Thummel,K., Brimer,C., Yasuda,K., Thottassery,J., Senn,T., Lin,Y.,
Ishizuka,H., Kharasch,E., Schuetz,J. and Schuetz,E. (2001)
Transcriptional control of intestinal cytochrome P-450 3A by 1alpha,
25-dihydroxy vitamin D3. Mol Pharmacol., 60, 1399–406.

42. Duda,R.O., Hart,P.E. and Stork,D.G. (2001) Pattern Classification. John
Wiley & Sons, Inc., London.

43. Bedell,J.A., Korf,I. and Gish,W. (2000) MaskerAid: a performance
enhancement to RepeatMasker. Bioinformatics, 16, 1040–1041.

44. Schneider,T.D. (1997) Information content of individual genetic
sequences. J. Theor. Biol., 189, 427–441.

45. Bi,C.-P., Vyhidal,C.A., Leeder,J.S. and Rogan,P.K. (2004) A
minimization entropy-based bipartite algorithm with application to PXR/
RXRa binding sites. Proccedings of Eighth Annual International
Conference on Research in Computational Molecular Biology
(RECOMB 2004), San Diego, CA, pp. 453–454.

46. Vyhlidal,C.A., Rogan,P.K. and Leeder,J.S. (2004) Development and
refinement of pregnane X receptor DNA binding site model using
information theory: insights into PXR mediated gene regulation. J. Biol.
Chem., doi:10.1074/jbc.M408395200.

Nucleic Acids Research, 2004, Vol. 32, No. 17 4991


