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Abstract  
Models of nucleic acid binding sites based on 
information theory accurately measure affinities of 
interactions with regulatory proteins. We present a 
new algorithm for delineating the constraints on these 
models. The optimal sequence pattern is found by 
minimizing entropy of multiple local bipartite or 
single block alignments. A scanning method was 
developed to define the extent of sequence 
conservation for these models (site widths) and to 
estimate binding site strength cutoffs via Monte Carlo 
simulation. We applied our methods to the bipartite 
binding site sequences of E. coli cyclic AMP receptor 
protein and single-block models of splicing regulatory 
proteins that recognize exon splicing enhancers.   

Keywords: bipartite modeling, information theory, 
transcription factor, gene regulation, regulation of 
mRNA splicing. 

1. Introduction 
To delineate genetic networks, we build 
experimentally-validated models for each family of 
binding sites recognized by the same nuclear 
regulatory factor (TF; [1]). Among TF binding sites, 
the bipartite motifs are widely recognized as important 
for gene regulation in both prokaryotes and eukaryotes 
[2]. A bipartite site consists of two adjacent blocks 
separated by variable length nucleotide spacer. A 
bipartite binding site model represented by position 
weight matrices: ML for left motif (L) and MR for right 
motif (R), and a gap uncertainty function based on the 
distance separating them, ω(d). Let M = (ML, MR)T and 
D be the gap range allowed, D = {d: dmin ≤d≤ dmax} 
and d is an integer. We use the notation: (M, ω(D)), to 
describe a bipartite model. We use JL<d>JR to express 
a bipartite motif/pattern where JL and JR are widths of 
left and right-site motifs, respectively. Let pmj be a row 
j vector in a bipartite matrix M. There are 4 
nucleotides X = {A, C, G, T} making a DNA 
sequence, so the size of M is |X|×(JL+JR). Let pmj(x), 
an element of vector pmj, be the probability of the 
nucleotide x at position j of motif m∈{L,R}. Given a 

set of known bipartite binding sequences, it is possible 
to apply minimum entropy-based multiple local 
bipartite alignment [2] to build such models, which 
can then be used to scan the relevant genome. In this 
paper, methods are introduced to automate detection 
of optimal motif widths and determine threshold 
information contents necessary to minimize detection 
of false positives. The optimum width is found using 
an initial model that is progressively extended with 
bipartite search patterns to determine the maximum 
information increment per nucleotide. To simplify the 
bipartite pattern scanning procedure, we define three 
information thresholds for the left and right-half sites 
and bipartite site. A valid bipartite site has information 
content above all specified cutoffs. We applied these 
methods to defining E. coli CRP transcription factor 
binding sites, and to sites bound by splicing regulatory 
factors, SF2-ASF, SC35 and SRp40. 

2. Methods 
Objective function 
Based on experimentation, a set of DNA sequences (S) 
is known to possess bipartite binding sites (either zero 
or one site per sequence), however the precise start 
positions of the motif have not been determined. Our 
goal is to locate those positions and then build a model 
M and derive the gap distribution function, ω(D) for 
the motif. To infer the parameters of M, we formulate 
the following sequence likelihood model which is a 
product of three probabilities, background (p0), gap 
(D) and a bipartite site:  
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where p0 is the background distribution and we assume 
a uniform: p0=(0.25, 0.25, 0.25, 0.25). A is the set of 
unknown bipartite sites (the multiple local bipartite 
alignment space), Aj is a subset of sites on location j. 
N(Aj) is the total count of four nucleotides on position 
j. Ac is the set of nucleotides in background sequences. 
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number of training sequences. 
Note that one-block models are built by setting 

the gap size at zero in each sequence. To estimate the 
optimal parameters for equation 1, we can maximize 
the log likelihood. This is difficult to carry out 
directly, as A comprises the hidden or missing data. 
The expectation maximization and Gibbs sampling 
methods have been used previously to determine these 
parameters [2]. We proposed and implemented a so-
called minimum entropy-based method [2]. 

We define the information content (IC) at position 
j of motif m as the difference between background and 
motif entropy: ICmj = H(p0) – H(pmj), a special case of 
relative entropy1 or the Kullback-Leibler distance [10]. 
Therefore, the higher the information content, the 
greater the level of motif conservation. Our goal is to 
find motifs with the highest information contents. 
Instead of directly maximizing the log likelihood, we 
greedily search the multiple local alignment space and 
locate those sites (amj) having the maximum total 
information content: ∑ ∑ =m

J

j mj
m IC

1
. The maximum 

likelihood problem is equivalent to maximum 
information [5]. The entropy H(pmj) depends on the 
aligned motif location (amj), so we write it as H(amj). 
Since H(p0) = log2|X| = 2.0 (bits), the objective 
function can be reduced to minimize the bipartite 
entropy (H) conditioning on a gap length range as: 
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where A* = {a*mj} representing the optimal bipartite 
alignment which corresponds to the optimal bipartite 
model (M, ω(D)). xamj is the nucleotide x at motif (m) 
position j on sequence starts at a. βx is the pseudo-
count [2] of the nucleotide x. aL and aR are start 
positions for left and right motifs respectively. 

                                                           
1 The relative entropy between two probability functions (p0, p): 
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If p0 follows uniform distribution, then: 
)(||log)()()||( 00 XHXpHpHppD −=−=  

Equation 2 is a conditional minimization problem. We 
used a greedy algorithm to search the multiple 
bipartite alignment space (A) and derive the optimal 
bipartite model as detailed in [2]. 
 
Individual information contents of bipartite sites 
We define the total information content (IC) of a 
bipartite site as sum of left (L) and right (R) half-site 
information minus a gap penalty (g(d)) [2]. Without 
the gap penalty, IC reduces to Rsequence, the average 
information, for single block binding sites [4].  By 
considering both strands of each half-site, there are 
four possible orientations or bipartite patterns [2]. 
Given a motif start site (a) and bipartite model, the 
individual information content of that site, Ri, is a 
function of M, a and d:  
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where e(n) is a sample correction [4]. The term [2.0-
{-log2(pmj)}] is the information weight at position j of 
motif m. Obviously, the nucleotide position with 
higher probability at j is assigned a higher weight, 
such that invariant positions exhibit the maximum Ri 
value, 2.0 bits. Ri = 0 bits when all nucleotides have 
the probability of the background sequence, ie. 0.25. 
A negative weight will be assigned for probabilities 
below 0.25. The gap penalty function is based on the 
gap frequency distribution (ω(D)) which is derived 
from the best bipartite alignment (A*). We define the 
gap frequency: ω(d) = f(d)/|D|, f(d) = 1.0 + cos(2π(d - 
c)/B), B is a DNA helical turn (10.4 bases/turn). So 
this gap function is applied to a short-gapped bipartite 
site (i.e. dmax ≤ 10 bps). c is the dominant or central 
gap size, f(c) = 2.0. The normalized gap penalty is 
defined by, 
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As shown in equation 4, the function assigns a zero 
penalty to the dominant gap size. 
 
Refinement of bipartite patterns 
Given the initial bipartite binding site pattern: 

)0()0()0(
RL JDJ ><=∆ , JL and JR are the left and 

right motif lengths, respectively, and D is the gap 
range [dmin, dmax]. We assume that the bipartite length 
range is [Lmin, Lmax].  With the constraints: JL + JR + 
dmin ≤ Lmin and JL + JR + dmax ≤ Lmax, we can generate a 
certain number of search patterns (Ψ). Based on the 
initial search pattern, a bipartite model can be derived 
with the average total information content, IC(0). Let 
the t-th search pattern be )()()( t

R
t

L
t JDJ ><=∆ and 

average information content be IC(t). We define a unit 
information incremental index (UII) as: 
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The optimal pattern (∆*) selected exhibits the highest 
information increment:  
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We can think of the initial pattern as the basis (core 
motifs) of a biological motif. We then extend both 
half-site motifs and find a new pattern with maximum 
UII such that )0()(

L
new

L JJ ≥ and )0()(
R

new
R JJ ≥ . If more 

than one maximum pattern is found, we take the 
pattern with the largest extension among (JL + JR). 
 
Bipartite scanning model 
To search for a bipartite instance of a known model in 
a DNA sequence (s) we built the probabilistic model 
for a bipartite site in a sequence (equation 7). The 
basic sequence model assumes that binding sites are 
embedded in “noisy” background sequence which is 
assumed to follow uniform multinomial distribution 
(p0). The bipartite model consists of two half-site 
PWM-based models (ML and MR) and a gap function 
ω(d). If the start position of the bipartite instance is 
known and indicated by a, and the gap distance is d, 
then the probability that the sequence is generated 
given the model parameters is, 
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where Xxl ∈ , pmj(x), an element of M, is the 
probability of finding the nucleotide x at motif 
position j and ac is the background sequence. Since 
we assume a constant background, we simply find a 
site with individual information content above a 
threshold. 

Consider the likelihood of observing a bipartite 
motif generated from sequence with pure background 
distribution p0 versus the corresponding probability a 
second sequence generated from p0 with a number of 
embedded bipartite sites, according to (M, ω(D)). 
Instead of directly computing the bipartite motif 
probability for a sequence in equation (7), we calculate 
the individual IC (Ri) for a site separately as described 
in equation (3), information for background sequences 
with embedded sequences. We wish to determine the 
likelihood of finding real sites that are true positives. 
We determine the IC distributions for different 
scenarios by generating background sequences, 
scanning the sequences with the previously developed 
information models (M, ω(D)), calculating the 
individual IC’s for all possible motif sites, and plotting 
the distribution. We assume that IC values follow a 
normal distribution with IC>0 bits [as we have 

previously shown, 6], which can be easily derived 
from bipartite training dataset. Binding site scans of 
the background sequences containing the embedded 
binding sites versus background sequences alone 
determine IC thresholds that distinguish true bipartite 
sites from decoys. The positive bipartite IC 
distribution derived from background sequences is 
then compared with the known bipartite IC 
distribution from the samples.     
 
Monte Carlo simulation 
We generate a set of background DNA sequences 
according to the distribution p0 and calculate 
information content (Ri) for each of scanned bipartite 
sites according to equations 3 and 4. Our bipartite 
model is based on information theory, so the 
background motif distribution is assumed as uniform 
multinomial, p0. The procedure for generating the 
sequences (dataset) was the same as previously 
described [2]. The frequency (probability) distribution 
of non-site information content will be derived from 
the simulated datasets. Based upon the fact that a 
binding site is considered as a putative site if its IC 
exceeds zero bits, we want to derive a conditional 
distribution P( S | IC>0, M) for both random (by 
chance) and embedded (known) bipartite sequences. 
The planted site distribution is derived from known 
sequences and assumed a normal distribution. The 
distributions (half-sites and total individual IC) for 
random sequences are derived by simulation. Binding 
site threshold values (Cb for bipartite IC, Cl and Cr for 
left and right-half site IC’s) are determined by 
minimizing Bayes error rates  (Type I and II) [11]. 
True bipartite sites are determined subject to 
IC(bipartite) > Cb and IC(left) > Cl and IC(right) > Cr.  

3. Results 
CRP binding sites 
A bipartite model was developed for a set of binding 
sites consisting of 18 sequences recognized by the 
dimeric cyclic AMP receptor protein (CRP). Each 
sequence is 105 base pairs long and each contains at 
least one bipartite site that has been experimentally 
identified via footprinting. The initial pattern was 
initially defined as a short-gapped bipartite motif: 
5<1,9>6 and 11 < JL + JR + d < 23 (bps).  The left and 
right motif widths were extended up to 10 bps, 
respectively. In total, we applied multiple bipartite 
local alignment based on minimum entropy to 30 
search patterns. Bipartite models for each pattern were 
derived and UII’s were calculated for each (Fig. 1). 
The optimal search patterns are 5<1,9>8 and 6<1,9>6 
as seen the maximum peaks (UII values are 0.44 and 
0.45 bits per base, respectively). We take 5<1,9>8 as 
the optimal bipartite pattern.  



Treating the CRP binding site as an imperfect 
direct repeat, we extended the optimal pattern 5<1,9>8 
to 8<1,9>8 and recomputed the UII value at 0.238 bits 
per base. Fig. 2 shows the optimal bipartite logo of 
CRP binding sites [2,3], containing an imperfect 
palindromic sequence, which is in agreement with our 
previous report [2]. 
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Fig. 1 Unit information increment index (UII) for 30 
different bipartite search patterns. 500 cycles were run 
for each [3]. 
 
Estimation of IC thresholds via simulation 
Although information theory predicts that sites 
exceeding zero bits should be recognized, 
experimentally studies do not always detect weak sites 
with low ICs. The minimum IC for the CRP 8<6>8 
model was estimated by simulation.  

 
Fig. 2 Bipartite sequence logo [2] for CRP bipartite 
binding model 8<6>8, central gap c = 6. 
 
The bipartite model was used to scan 106 simulated 
sequences (each 100 bp long) and to estimate the site 
frequencies for left and right-half sites and bipartite 
sites conditioning on IC> 0.0 bits. To determine the IC 
thresholds, we plot the random sites together with the 
known site distributions and graph the IC threshold 
values in each case. The derived cutoffs are: Cl = 3.8, 
Cr = 4.2 and Cb = 8.6 bits. The Bayes error rates for 
bipartite IC are lower (0.015) than half-site IC (0.15). 
The IC distribution for the bipartite site is indicated in 
Fig. 3 where the dotted line demarcates the Bayesian 
decision boundary giving the lowest probability of 
error [11]. Based on these thresholds, we are scanning 
the E. coli genome with the CRP bipartite model to 
search for putative binding sites upstream of co-
regulated genes (not shown). 

Application to regulatory splicing binding sites 
We estimated the site widths and IC thresholds of 
experimentally-validated binding sites recognized by 
proteins that regulate mRNA splicing: SC35, SRp40 
and SF2-ASF [7,8]. The model for each site was 
initially set to a width of 5 bp and then extended. Fig. 
4 shows the results of one-block motif UII curves. 
Three binding motifs have peaks at 6 bps. TheSF2-
ASF curve is uni-modal, and SC35 and SRp40 curves 
are multi-modal. The SC35 binding motif has second 
peak at 8 bps. A very weak peak for SRp40 occurs at 8 
bps. Given the UII cutoff of 0.05 bits per base, the 
optimal widths are 7, 6 and 8 bps for SF2-ASF, SRp40 
and SC35 protein binding sites, respectively (sequence 
logos presented in Table 1). For a multi-modal UII 
curve, here we set a cutoff UII (e.g. 0.05) and take the 
longest motif (e.g. 8 bps) as the optima. 
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Fig. 3 Plots of IC distributions for background vs 
experimentally-determined bipartite CRP sites.  
 

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

One-block motif width (bps)

SC35
SRp40
SF2_ASF

 
Fig. 4 Plots of motif width vs. UII for splicing 
regulatory proteins: SC35, SF2-ASF and SRp40. 
 
Table 1 shows the optimal widths (w) for single 
stranded mRNA splicing regulatory protein binding 
sites, IC thresholds (δ), average information contents 
(IC), and sequence logos. It also shows that 7-mer 
motif for the optimal width of SF2-ASF protein 
binding sites is preferred as more information gained 
and conserved.  Very little information is gained for 



SRp40 8-mer motif compared to the 6-mer and the 
models are statistically indistinguishable [4].     
 
Table 1. Optimal widths (w) and IC thresholds (δ) of 
splicing regulatory protein binding sites  
 

Factor w δ IC Sequence logo 

SC35 6 2.5 4.39 
 

 8 2.7 4.53 
 

SF2 7 3.6 5.77 
 

SRp40 6 2.8 4.54 
 

 

4. Discussion  
In this paper we gave a systemic account of bipartite 
modeling and scanning problems. Given an initial 
search pattern, we applied greedy algorithm to do 
minimum entropy-based alignment and build the 
bipartite model. We then extend the initial pattern to 
the point where the incremental information is 
maximized. Three information cutoffs for a bipartite 
site are determined via Monte Carlo simulation. 

To implement effective threshold determination of 
bipartite modeling, we suggest a reasonable initial 
pattern of core motif widths consistent with the 
biological data, since the full length of bipartite motif 
is usually unknown and short repeats are frequently 
present in regulatory regions of genomes [2]. The final 
adjustment relies on the fact that the most common 
nucleotides in a bipartite (or single block) logo are 
related to inferred consensus patterns. The models 
often, however, depict subtle variation at conserved 
positions. The threshold algorithms presented here can 
potentially reveal alternative binding configurations 
and delineate weak binding sites not evident from 
consensus sequences. Despite the presumed increased 
sensitivity for recognizing true binding sites, it is 
unlikely that de novo automation of motif discovery 
would be feasible without experimental verification.   

If the calculated UII value falls below the UII 
cutoff, we treat the additional nucleotide information 
as noise and thus ignore these positions; otherwise, 
they are considered signals and retained in the weight 
matrix.  

We set three cutoffs for each scanned bipartite site 
in order to reduce the false positive rate while 
scanning a genome. The disadvantage of doing so is 
that it potentially misses some weak binding sites as 
the thresholds were derived based on minimizing 
Bayes error-rate.  

Significant differences between models of binding 
sites recognized by the same factor are sometimes 
evident, when the IC is the only quantitative criterion 
to define sites (Table 1). Minimizing uncertainty can 
result in multiple equivalent outcomes, such as that 
seen for SC35. Experimental mutagenesis and binding 
studies are the only means of unequivocally 
distinguishing the correct model.  

The optimized mRNA splicing regulatory protein 
models derived in this study can be used to predict 
human mutations at these sites at 
https://splice.cmh.edu; [9].  
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